Installation Guide

This guide walks you through installing QDrant Loader and its MCP server on your system. Choose the installation method that best fits your needs.

📋 Overview

QDrant Loader consists of two main packages:

  • qdrant-loader - Core data ingestion and processing tool
  • qdrant-loader-mcp-server - Model Context Protocol server for AI tool integration

Both packages can be installed independently, but most users will want both for the complete experience.

🔧 Prerequisites

System Requirements

Component Minimum Recommended
Python 3.12+ 3.12+
Memory 4GB RAM 8GB+ RAM
Storage 2GB free 10GB+ free
OS Windows 10+, macOS 10.15+, Linux Latest versions

Required Services

QDrant Vector Database

QDrant Loader requires a QDrant instance to store vectors and metadata.

Option 1: Docker

# Start QDrant with Docker
docker run -p 6333:6333 -p 6334:6334 \
  -v $(pwd)/qdrant_storage:/qdrant/storage:z \
  qdrant/qdrant

Option 2: QDrant Cloud

  1. Sign up at QDrant Cloud
  2. Create a cluster
  3. Note your cluster URL and API key

Option 3: Local Installation

Follow the QDrant installation guide for your platform.

OpenAI API Access

QDrant Loader uses OpenAI for embeddings generation.

  1. Create an account at OpenAI
  2. Generate an API key
  3. Ensure you have sufficient credits/quota

Development Tools (Optional)

For development or advanced usage:

# Git for repository cloning
git --version

# Docker for containerized services
docker --version

# Node.js for some AI tools integration
node --version

🚀 Installation Methods

This is the easiest method for most users.

Install Core Package

# Install the core QDrant Loader
pip install qdrant-loader

# Verify installation
qdrant-loader --version

Install MCP Server

# Install the MCP server package
pip install qdrant-loader-mcp-server

# Verify installation
mcp-qdrant-loader --version

Install Both Packages

# Install both packages at once
pip install qdrant-loader qdrant-loader-mcp-server

# Or install with all optional dependencies
pip install qdrant-loader[all] qdrant-loader-mcp-server[all]

Method 2: Development Installation

For contributors or users who want the latest features:

# Clone the repository
git clone https://github.com/martin-papy/qdrant-loader.git
cd qdrant-loader

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install in development mode
pip install -e packages/qdrant-loader[dev]
pip install -e packages/qdrant-loader-mcp-server[dev]

# Verify installation
qdrant-loader --version
mcp-qdrant-loader --version

Method 3: Virtual Environment (Isolated)

For users who want to keep QDrant Loader isolated:

# Create dedicated virtual environment
python -m venv qdrant-loader-env
source qdrant-loader-env/bin/activate  # On Windows: qdrant-loader-env\Scripts\activate

# Install packages
pip install qdrant-loader qdrant-loader-mcp-server

# Create activation script for future use
echo "source $(pwd)/qdrant-loader-env/bin/activate" > activate-qdrant-loader.sh
chmod +x activate-qdrant-loader.sh

🔍 Platform-Specific Instructions

Windows

Using Command Prompt

# Install Python 3.12+ from python.org
# Open Command Prompt as Administrator

# Install packages
pip install qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

Using PowerShell

# Install packages
pip install qdrant-loader qdrant-loader-mcp-server

# Add to PATH if needed
$env:PATH += ";C:\Users\YourUsername\AppData\Local\Programs\Python\Python312\Scripts"

# Verify installation
qdrant-loader --version

Using Windows Subsystem for Linux (WSL)

# In WSL terminal
pip install qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

macOS

Using Terminal

# Install with pip
pip install qdrant-loader qdrant-loader-mcp-server

# If you get permission errors, use:
pip install --user qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

Using Homebrew Python

# If using Homebrew Python
brew install python@3.12
pip3 install qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

Linux

Ubuntu/Debian

# Update package list
sudo apt update

# Install Python 3.12+ if not available
sudo apt install python3.12 python3.12-pip python3.12-venv

# Install packages
pip3 install qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

CentOS/RHEL/Fedora

# Install Python 3.12+ if not available
sudo dnf install python3.12 python3.12-pip

# Install packages
pip3 install qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

Arch Linux

# Install Python if needed
sudo pacman -S python python-pip

# Install packages
pip install qdrant-loader qdrant-loader-mcp-server

# Verify installation
qdrant-loader --version

✅ Verification

Test Core Installation

# Check version
qdrant-loader --version

# Check help
qdrant-loader --help

# Test configuration display
qdrant-loader config

Test MCP Server Installation

# Check version
mcp-qdrant-loader --version

# Test server startup (Ctrl+C to stop)
mcp-qdrant-loader

# Check help for available options
mcp-qdrant-loader --help

Test Integration

# Test QDrant connection and basic functionality
qdrant-loader project status

# For basic testing, you would typically:
# 1. Set up a workspace with config.yaml and .env
# 2. Initialize the collection: qdrant-loader --workspace . init
# 3. Run ingestion: qdrant-loader --workspace . ingest

🔧 Configuration Setup

After installation, you'll need to configure QDrant Loader:

Quick Configuration

# Create configuration directory and files manually
mkdir -p ~/.qdrant-loader
# Copy template configuration files from the repository or create them manually
# See the configuration examples below

Environment Variables

Create a .env file or set environment variables:

# Required
export QDRANT_URL="http://localhost:6333"
export OPENAI_API_KEY="your-openai-api-key"

# Optional
export QDRANT_API_KEY="your-qdrant-api-key"  # For QDrant Cloud
export QDRANT_COLLECTION_NAME="documents"

Configuration File

Create config.yaml in your workspace or ~/.qdrant-loader/config.yaml:

# Basic configuration
qdrant:
  url: "${QDRANT_URL}"
  collection_name: "${QDRANT_COLLECTION_NAME}"

openai:
  api_key: "${OPENAI_API_KEY}"
  model: "text-embedding-3-small"

# Data sources
sources:
  git:
    enabled: true
  confluence:
    enabled: false
  local:
    enabled: true

🔧 Troubleshooting Installation

Common Issues

Python Version Issues

Problem: qdrant-loader requires Python 3.12+

Solution:

# Check Python version
python --version

# Install Python 3.12+ from python.org or your package manager
# Use specific version if multiple installed
python3.12 -m pip install qdrant-loader

Permission Errors

Problem: Permission denied during installation

Solution:

# Use user installation
pip install --user qdrant-loader qdrant-loader-mcp-server

# Or use virtual environment
python -m venv venv
source venv/bin/activate
pip install qdrant-loader qdrant-loader-mcp-server

Command Not Found

Problem: qdrant-loader: command not found

Solution:

# Check if installed
pip list | grep qdrant-loader

# Find installation path
python -m pip show qdrant-loader

# Add to PATH (example for Linux/macOS)
export PATH="$HOME/.local/bin:$PATH"

# For permanent fix, add to ~/.bashrc or ~/.zshrc
echo 'export PATH="$HOME/.local/bin:$PATH"' >> ~/.bashrc

QDrant Connection Issues

Problem: Cannot connect to QDrant

Solution:

# Check if QDrant is running
curl http://localhost:6333/health

# Start QDrant with Docker
docker run -p 6333:6333 qdrant/qdrant

# Check configuration
qdrant-loader config

OpenAI API Issues

Problem: OpenAI API authentication errors

Solution:

# Check API key is set
echo $OPENAI_API_KEY

# Test API key
curl -H "Authorization: Bearer $OPENAI_API_KEY" \
  https://api.openai.com/v1/models

# Set API key
export OPENAI_API_KEY="your-actual-api-key"

Getting Help

If you encounter issues not covered here:

  1. Check the logs: qdrant-loader --verbose
  2. Verify configuration: qdrant-loader config
  3. Search existing issues: GitHub Issues
  4. Create new issue: Include error messages and system info

🔄 Updating

Update to Latest Version

# Update core package
pip install --upgrade qdrant-loader

# Update MCP server
pip install --upgrade qdrant-loader-mcp-server

# Update both
pip install --upgrade qdrant-loader qdrant-loader-mcp-server

Development Updates

# For development installations
cd qdrant-loader
git pull origin main
pip install -e packages/qdrant-loader[dev]
pip install -e packages/qdrant-loader-mcp-server[dev]

🔗 Next Steps

After successful installation:

  1. Quick Start Guide - Get up and running in 5 minutes
  2. Core Concepts - Understand vector databases and embeddings
  3. Basic Configuration - Set up your first data sources
  4. User Guides - Explore detailed feature documentation

📋 Installation Checklist

  • [ ] Python 3.12+ installed and accessible
  • [ ] QDrant database running (Docker, Cloud, or local)
  • [ ] OpenAI API key obtained and configured
  • [ ] qdrant-loader package installed
  • [ ] qdrant-loader-mcp-server package installed
  • [ ] Installation verified with version commands
  • [ ] Basic configuration created
  • [ ] QDrant connection tested
  • [ ] Ready for Quick Start guide

Installation complete! 🎉

You're now ready to start using QDrant Loader. Continue with the Quick Start Guide to ingest your first documents and set up AI tool integration.

Back to Documentation
Generated from installation.md