Installation Guide
This guide walks you through installing QDrant Loader and its MCP server on your system. Choose the installation method that best fits your needs.
📋 Overview
QDrant Loader consists of two main packages:
qdrant-loader
- Core data ingestion and processing toolqdrant-loader-mcp-server
- Model Context Protocol server for AI tool integration
Both packages can be installed independently, but most users will want both for the complete experience.
🔧 Prerequisites
System Requirements
Component | Minimum | Recommended |
---|---|---|
Python | 3.12+ | 3.12+ |
Memory | 4GB RAM | 8GB+ RAM |
Storage | 2GB free | 10GB+ free |
OS | Windows 10+, macOS 10.15+, Linux | Latest versions |
Required Services
QDrant Vector Database
QDrant Loader requires a QDrant instance to store vectors and metadata.
Option 1: Docker
# Start QDrant with Docker
docker run -p 6333:6333 -p 6334:6334 \
-v $(pwd)/qdrant_storage:/qdrant/storage:z \
qdrant/qdrant
Option 2: QDrant Cloud
- Sign up at QDrant Cloud
- Create a cluster
- Note your cluster URL and API key
Option 3: Local Installation
Follow the QDrant installation guide for your platform.
OpenAI API Access
QDrant Loader uses OpenAI for embeddings generation.
- Create an account at OpenAI
- Generate an API key
- Ensure you have sufficient credits/quota
Development Tools (Optional)
For development or advanced usage:
# Git for repository cloning
git --version
# Docker for containerized services
docker --version
# Node.js for some AI tools integration
node --version
🚀 Installation Methods
Method 1: pip Install (Recommended)
This is the easiest method for most users.
Install Core Package
# Install the core QDrant Loader
pip install qdrant-loader
# Verify installation
qdrant-loader --version
Install MCP Server
# Install the MCP server package
pip install qdrant-loader-mcp-server
# Verify installation
mcp-qdrant-loader --version
Install Both Packages
# Install both packages at once
pip install qdrant-loader qdrant-loader-mcp-server
# Or install with all optional dependencies
pip install qdrant-loader[all] qdrant-loader-mcp-server[all]
Method 2: Development Installation
For contributors or users who want the latest features:
# Clone the repository
git clone https://github.com/martin-papy/qdrant-loader.git
cd qdrant-loader
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install in development mode
pip install -e packages/qdrant-loader[dev]
pip install -e packages/qdrant-loader-mcp-server[dev]
# Verify installation
qdrant-loader --version
mcp-qdrant-loader --version
Method 3: Virtual Environment (Isolated)
For users who want to keep QDrant Loader isolated:
# Create dedicated virtual environment
python -m venv qdrant-loader-env
source qdrant-loader-env/bin/activate # On Windows: qdrant-loader-env\Scripts\activate
# Install packages
pip install qdrant-loader qdrant-loader-mcp-server
# Create activation script for future use
echo "source $(pwd)/qdrant-loader-env/bin/activate" > activate-qdrant-loader.sh
chmod +x activate-qdrant-loader.sh
🔍 Platform-Specific Instructions
Windows
Using Command Prompt
# Install Python 3.12+ from python.org
# Open Command Prompt as Administrator
# Install packages
pip install qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
Using PowerShell
# Install packages
pip install qdrant-loader qdrant-loader-mcp-server
# Add to PATH if needed
$env:PATH += ";C:\Users\YourUsername\AppData\Local\Programs\Python\Python312\Scripts"
# Verify installation
qdrant-loader --version
Using Windows Subsystem for Linux (WSL)
# In WSL terminal
pip install qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
macOS
Using Terminal
# Install with pip
pip install qdrant-loader qdrant-loader-mcp-server
# If you get permission errors, use:
pip install --user qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
Using Homebrew Python
# If using Homebrew Python
brew install python@3.12
pip3 install qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
Linux
Ubuntu/Debian
# Update package list
sudo apt update
# Install Python 3.12+ if not available
sudo apt install python3.12 python3.12-pip python3.12-venv
# Install packages
pip3 install qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
CentOS/RHEL/Fedora
# Install Python 3.12+ if not available
sudo dnf install python3.12 python3.12-pip
# Install packages
pip3 install qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
Arch Linux
# Install Python if needed
sudo pacman -S python python-pip
# Install packages
pip install qdrant-loader qdrant-loader-mcp-server
# Verify installation
qdrant-loader --version
✅ Verification
Test Core Installation
# Check version
qdrant-loader --version
# Check help
qdrant-loader --help
# Test configuration display
qdrant-loader config
Test MCP Server Installation
# Check version
mcp-qdrant-loader --version
# Test server startup (Ctrl+C to stop)
mcp-qdrant-loader
# Check help for available options
mcp-qdrant-loader --help
Test Integration
# Test QDrant connection and basic functionality
qdrant-loader project status
# For basic testing, you would typically:
# 1. Set up a workspace with config.yaml and .env
# 2. Initialize the collection: qdrant-loader --workspace . init
# 3. Run ingestion: qdrant-loader --workspace . ingest
🔧 Configuration Setup
After installation, you'll need to configure QDrant Loader:
Quick Configuration
# Create configuration directory and files manually
mkdir -p ~/.qdrant-loader
# Copy template configuration files from the repository or create them manually
# See the configuration examples below
Environment Variables
Create a .env
file or set environment variables:
# Required
export QDRANT_URL="http://localhost:6333"
export OPENAI_API_KEY="your-openai-api-key"
# Optional
export QDRANT_API_KEY="your-qdrant-api-key" # For QDrant Cloud
export QDRANT_COLLECTION_NAME="documents"
Configuration File
Create config.yaml
in your workspace or ~/.qdrant-loader/config.yaml
:
# Basic configuration
qdrant:
url: "${QDRANT_URL}"
collection_name: "${QDRANT_COLLECTION_NAME}"
openai:
api_key: "${OPENAI_API_KEY}"
model: "text-embedding-3-small"
# Data sources
sources:
git:
enabled: true
confluence:
enabled: false
local:
enabled: true
🔧 Troubleshooting Installation
Common Issues
Python Version Issues
Problem: qdrant-loader requires Python 3.12+
Solution:
# Check Python version
python --version
# Install Python 3.12+ from python.org or your package manager
# Use specific version if multiple installed
python3.12 -m pip install qdrant-loader
Permission Errors
Problem: Permission denied
during installation
Solution:
# Use user installation
pip install --user qdrant-loader qdrant-loader-mcp-server
# Or use virtual environment
python -m venv venv
source venv/bin/activate
pip install qdrant-loader qdrant-loader-mcp-server
Command Not Found
Problem: qdrant-loader: command not found
Solution:
# Check if installed
pip list | grep qdrant-loader
# Find installation path
python -m pip show qdrant-loader
# Add to PATH (example for Linux/macOS)
export PATH="$HOME/.local/bin:$PATH"
# For permanent fix, add to ~/.bashrc or ~/.zshrc
echo 'export PATH="$HOME/.local/bin:$PATH"' >> ~/.bashrc
QDrant Connection Issues
Problem: Cannot connect to QDrant
Solution:
# Check if QDrant is running
curl http://localhost:6333/health
# Start QDrant with Docker
docker run -p 6333:6333 qdrant/qdrant
# Check configuration
qdrant-loader config
OpenAI API Issues
Problem: OpenAI API authentication errors
Solution:
# Check API key is set
echo $OPENAI_API_KEY
# Test API key
curl -H "Authorization: Bearer $OPENAI_API_KEY" \
https://api.openai.com/v1/models
# Set API key
export OPENAI_API_KEY="your-actual-api-key"
Getting Help
If you encounter issues not covered here:
- Check the logs:
qdrant-loader --verbose
- Verify configuration:
qdrant-loader config
- Search existing issues: GitHub Issues
- Create new issue: Include error messages and system info
🔄 Updating
Update to Latest Version
# Update core package
pip install --upgrade qdrant-loader
# Update MCP server
pip install --upgrade qdrant-loader-mcp-server
# Update both
pip install --upgrade qdrant-loader qdrant-loader-mcp-server
Development Updates
# For development installations
cd qdrant-loader
git pull origin main
pip install -e packages/qdrant-loader[dev]
pip install -e packages/qdrant-loader-mcp-server[dev]
🔗 Next Steps
After successful installation:
- Quick Start Guide - Get up and running in 5 minutes
- Core Concepts - Understand vector databases and embeddings
- Basic Configuration - Set up your first data sources
- User Guides - Explore detailed feature documentation
📋 Installation Checklist
- [ ] Python 3.12+ installed and accessible
- [ ] QDrant database running (Docker, Cloud, or local)
- [ ] OpenAI API key obtained and configured
- [ ] qdrant-loader package installed
- [ ] qdrant-loader-mcp-server package installed
- [ ] Installation verified with version commands
- [ ] Basic configuration created
- [ ] QDrant connection tested
- [ ] Ready for Quick Start guide
Installation complete! 🎉
You're now ready to start using QDrant Loader. Continue with the Quick Start Guide to ingest your first documents and set up AI tool integration.